
CuLao: a framework for constructing utilities from LLMs in
resource-constrained computing environments (RCEs), focuses
on key requirements of COCOS by enabling the provisioning and
coordination of LLMs utilities, based on edge LLMs.

ACM 4th International Conference on
Information Technology for Social Good (GoodIT 2024)

CuLao - Constructing Utilities of
Large Language Models in Resource-Constrained Environments

Hong-Linh Truong
Department of Computer Science, Aalto University

linh.truong@aalto.fi

Nguyen Ngoc Nhu Trang
Daienso Lab

nhutrang.nguyen@daienso.com

ACM GoodIT 2024, Bremen, Germany, 4-6 September 2024

MOTIVATION

The increasing development and utilization of Large Language Model (LLM)
services have demonstrated many benefits in different contexts. However,
LLM services are mainly available in the public cloud and require huge
computing resources to operate, thus not accessible to many Companies,
Organizations, and Communities with cOnstrained reSources (COCOS),
where there is a lack of networks, machines and ML/LLM expert capabilities.

RQ1

Provisioning LLM
utilities in

resource-constrained
computing environments

of non-dedicated
desktops, medium

servers and edge devices

RQ2

Sharing LLM utilities
within and between
resource-constrained
computing environments

RQ3

Easing the development
tasks for integration with
suitable COCOS
applications

UNDERSTANDING CONTEXTS AND REQUIREMENTS

Provisioning LLMs in COCOS are driven by three different main contexts:

● ML infrastructure context: related to network and computing resources
required by LLMs.

● Application purpose context: related to the goal of using LLMs, helping to
select LLMs features and identify LLMs issues.

● Operational context: related to costs, security and policy issues, and energy
and sustainability conditions that impact on the operation.

ARCHITECTURE, MODELS AND TECHNIQUES

High-level view of CuLao: harmonizing LLMs as
utilities in resource constrained computing
environments.

Within an RCE, CuLao establishes a LLM Utility
Ensemble (LUE), which includes:

● LLMs: are selected and optimized based on
COCOS needs.

● Service Discovery: monitors and publishes
available LLM utilities.

● RCE-aware LUE Coordinator: decides suitable
LLM utilities and route queries.

● Result Storage: for asynchronous retrievals.
● Prompt Templates: support building queries.

Making LLMs as service utilities

Discovering and sharing LLM utilities

Routing and coordinating queries and answers

Handling results for applications

Updating LLMs and integrating new LLMs

● Encapsulating LLMs into services: AMQP-based LLM utilities as they fulfill
the need of asynchronous invocation, easy to manage requests. To manage a
LUE, each LUE has a catalog specifying detailed information about LLMs,
executors and required parameters.

● Interfacing with individual LLMs: two layers of queries handling in RCEs
are included: LLM utility itself (e.g., for AMQP) and LLM-specific
Gateways/LUE Coordinator.

Code excerpt illustrating how to load a model based on its
configuration to instantiate an AMQP-based LLM utility.

Simplified example of an entry
in a LUE Catalog.

Utilities can be started and stopped
arbitrarily due to non-dedicated
resources. We use Consul for service
discovery and secret management. Based
on the configuration, the LUE Coordinator
can share LLM service information to
another LUE. Example of simplified service information.

To route queries to the right LLM utilities, we develop a
basic task model encapsulating key information:
● task type: represents the selected type of tasks in LUE
● service tags: tags used identifying LLM utilities
● execution mode: represents information about the

execution of requestsA simple, easy-to-specify
configuration.

Results are buffered in Result Storage. Message chats, generated code and
generated texts are stored in Redis. Results from LLMs are always stored into
Result Storage before being pulled back to the application. This is done by a
combination work of LLM-specific Gateway and the Coordinator.

(i) assessing new versions of LLMs or new LLMs, (ii) pulling LLM models and
building LLM utilities, (iii) providing configuration information, (iv)
(re)launching the LLM utilities

Requirements (RQs) related to
infrastructures and operational contexts

