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Large-scale mobile networks: multiple mobile
sites/cells, different zones, different businesses
=> subjects under analytics are very dynamic
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International Conference on Big Data
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Example: our studied network has ~7000 mobile sites, ~30K
mobile cells, covering 12 provinces in the central part of Vietnam
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Anomaly detection enables telco operations to
find problems in traffic, usage, connectivity
status, etc., but there is no lack of anomaly
detection algorithms and systems.

So our work?
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Anomalies detected by algorithms
but irrelevant to analytics contexts

e Analytics subjects are diverse: |
dynamic zones with different b g b
constraints/properties e

(b) algorithm = histogram
'spike

e Anomaly detection is not
universally applicable for dynamic
subjects

e Various contexts affect the
development and execution of
detection pipelines
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How to solve the irrelevant situation?
- Understanding the role of contexts

e The context of data
o quality, volume, delay, availability (due to measurements and
data access)
e The context of analytic subjects
o the same type of subjects but with different type of
businesses, markets, thresholds, etc.
e The context of team operations
o deployment, time, no ML experts

= Understanding and bringing contexts into end-to-end
anomaly detection for finding relevant anomalies
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Context-awareness in end-to-end
detection
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ontexts, data and algorithms for

suitable anomaly patterns

Analytics Feature Contexts

Classify and model
feature and team
contexts

neededBy

Analytics feature context types: Description of example data

Data: record example

usage: hourly time series of traffic TRAFFIC4G: the total traffic of all | (DATE" °'DISTRICT" 'TRAFHC4G’): (’2022-09-06 09:00:00'

4G cells in the zone foaxxx’ '1286.79716')

alarm: real-time time series alarm: including duration, type of alarms, | ("VENDOR’ 'SITET "CELL" 'NETWORK’® "SDATE’ "EDATE’

ete. by window time, alarm starttime (SDATE) and endtime (EDATE) "ALARM_TYPE' "SEVERITY' ‘ALARM_NAME'): (‘ssss’ ‘s’
Tt * RAN_4G’ *2022-09-01 00:30:00" r2022-09-01
00:32:49’ 1’ ‘A3’ '61631')

availability: hourly ime senies of availability calculated from the rate | ( DATE' 'DISTRICT AVAILAIBILITY'): (' 2022-09-07 10:00:007

of total serving time per hour of all 4G celKs in the zone Caxxx’ 199.67')

cay y: hourly 4G downlink throughput (THP_DL) as the rate of | ("DATE’ ‘DISTRICT 'THP_DL ‘'TRAFFIC4G_DL'): (’2022-09-07

ul message ( _VOL_DL) per time TIME_DL) of all
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mobility: hourly data of handover atempt | (DATE DISTRICT INTERRAT_HO_ATT INTRAFEQ_HO_ATT):
(INTERRAT_HO_ATT, INTRAFEQ_HO_ATT). as the | (Y2022-09-06 09:00:007 *xxxx’ * 3128 *442321")

total inter-rat and intra-frequency attempt of all 4G cells in a zone

retainability: hourly data of failure (ERAB_ABNORMAL), calculated
as the total abnormal release of all 4G cells in zone

(CDATE’ "DISTRICT” "ERAB_ABNORMAL"):
09:00:00" *»»xx’ *3053)
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Composable, multi-context anomaly
detection
Different

""" Ioentity patiems, ---identify anomalies based on . .
pipelines are

domain anomalies .
- context constraint

' Domain experts v Team d e p I oye d

Domain experts v
Algorithms, panems‘ﬂ context JSON

Data {] 4>‘inpl/ediuﬂ | ::::u%'{] L) Algorithmsg >
extraction experiments evaluation and contexts mapping bas e d o n th e
contexts

A A

hreshold=a. 7

Historical data

Anomaly percentate=o, 8

Feature context:

i S B it o ata gt

- usage I—\I

- capability jgoy

|

~--1- alarm %
- level_shift |
.....  pca : o alse alse
34 o "i""""""" i atlia Suitable algorithms, ﬁ
', Training/ context composition Jso; "context type": "ctx usage",
""""""""""""""""""""""""""""""""""""""""""""""" Evaluating "feature_context": {
. .. "analyticsubject": {
_______ 3 2 "subject fieldname": "DISTRICT",
T idel o ~ Other_ "constraints": [{"VENDOR": "Nokia"}]
Team ﬁ Featwre [ - = o P y analytics } . .
_____ 5 omain .
Eontext Njcontext_jsoy - , experts "required data_fields": [
) - mult-algo, multi-context, STRAFRICAGE
----- neavrcattine. > Multi-algo {l individual c%mext =5 Composaie, {I voted Anomaly{l H
time series anomaly ity =2 A multi-context anomalies [T handling "time _constraints":
Network detection anomaly evaluation | rfrom": {"DATE": "2022-09-01"},
measurements ; L) "to": [{"DATE": "2022-11-01"]
= z - 3,
Composable, context-aware anomaly detection pipelines "dataquality": {}
}

u . .
Two comblnatlons: (I) for the same pattern shift,histogram,velatility_shift,spectralresidual,
oted_ancmaly_spikes,voted_weight_spikes,voted_ano
maly_pattern_changes,voted_weight_pattern_changes,

voted_ancmaly, voted_weight

type and among different anomaly patterns in
a context; and (ii) among different contexts 600 1.0.0000 0071003910028

Nhu Trang & Truong, DAD

IEEE COMPSAC 2023, Turin, ltaly, June 27, 2023
9




Prototype with Python (Pandas, Spark, etc.)

Reuse multiple detection algorithms
o select, test and evaluate selected algorithms from existing
frameworks

Contexts applied along pipelines
o data processing — detection — voting

Data

o ~ 3+ months data: 6.09.2022-20.11.2022

o network measurement at the mobile cell level (136 districts, 6
contexts)

o experimented with 9 districts/3 types of market regions = 48
districts = 11 user-defined zones (5-20 sites per zone, 0.7-5 km2

u Trang ruong, DAD
Coverages) IEEE COMPSAC 2023, Turin, Italy, June 27, 2023



One example of deployments

QAIEN

ANOMALY DETECTION RESULTS

SO

m i Real time Visualization 2 ]
WM’“W M“’“ ” 'M i/ ~
m o g lmw %

615
context=capabil inglecorextvote, subject=Trang_mi

W\\%

224825

EERRRER

i

T

Nhu Trang & Truong, DAD
IEEE COMPSAC 2023, Turin, ltaly, June 27, 2023

11



Understanding sensitivity of algorithms
and contexts T em—p——

spikes in operations
(accessibility)
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Combining anomalies from multiple
user-defined and pre-defined zones

d I @ ct = ned zone on district
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Multi-context anomaly and alarm for
operations

(a) context = availabilit\i. algorithm = histogram

B/ s auans

Multi-context anomaly detection
provides higher confidence and o
relevance w.r.t. problems in operations
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Conclusions and future work

e Context-aware, composable approach
o context is considered in all phases of detection pipelines
o composition of multiple algorithms and composition of pipelines
= Dbringing relevant anomalies and supporting different ways of
detection deployment

e Future work
o user-defined zones %F%ﬁ%
o composable anomaly detection for other domains : @ %
Ofeet’ls

scan the paper

Thank you for your attention!
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